Variations in Sediment Concentration caused by Modified Waves and Currents in an Offshore Wind Farm

Seyed Taleb Hosseini¹, Johannes Pein¹, Joanna Staneva¹, Emil Stanev¹

1. Institute of Coastal Systems-Analysis and Modeling, Helmholtz-Zentrum Hereon, Geesthacht, Germany

Motivation

This study adopts a multi-use resource strategy to advance the blue economy under the EU Green Deal, with particular focus on the potential of multi-use offshore wind farm (OWF) energy and low-trophiclevel aquaculture. It constitutes a foundational step in our efforts to simulate suspended sediment concentration (SSC) under realistic conditions current-wind involving wave-OWF monopile interactions at the Meerwind-OWF site (German Bight, North Sea).

Numerical modeling

- 3D fully coupled model (SCHISM-WWM) integrating hydrodynamics, wind wave dynamics, and sediment transport
- High-resolution unstructured grids: 2 km (marine open boundaries) to 2 m (near the OWF piles)
- Sediment inputs: "EasyGSH-DB" dataset (Sievers et al., 2020).
- Horizontal grid: ~589k nodes
- vertical LSC²-layers • 21
- Open ocean boundary: CMEMS AMM15 (SSH, Vel, T, S)
- Atmospheric forcing: hourly **DWD** data
- Wave boundary: WaveWatch III data
- Four different numerical experiments (**Pile, noPile, PileNW, noPileNW**)

Experiment	Activated	Activated	Including OWF
	"Hydro" + "Sed" modules	"Wave" module	piles
Pile	Yes	Yes	Yes
noPile	Yes	Yes	No
PileNW	Yes	No	Yes
noPileNW	Yes	No	No

Model Results

Site	Model skill (-)	RMSE (g/l)
TEX	0.728	0.008
AME	0.603	0.013
HEL	0.601	0.001
ELB	0.714	0.013

Monthly mean depth-averaged SSC in March 2020

Pile compared to noPile

SSC in the neap-spring transition

7.8

Longitude(°E)

PileNW compared to noPileNW

7.6

Summary

Current-pile interactions enhance SSC promoting southwestward deposition. Ο

8.2

SSC change (%) 20

- Wave-current-pile interactions result in erosion downstream of the dominant
- westerly and southwesterly waves.
- SSC exhibits substantial variation (~ 20-fold) across neap-spring tidal cycles. Ο
- Tidal asymmetry in turbulent wakes on either side of the piles induces a Ο

corresponding asymmetry in SSC.

Helmholtz-Zentrum Hereon • Max-Planck-Straße 1 • 21502 Geesthacht I Germany • seyed.hosseini@hereon.de

54.6

Latitude(°N) 24.2 24.4

54.3

54.6

Latitude(°N) 24.7 24.4

54.3

7.4

7.4

Ê_-10

-15

Dep